网上有关“面板模型的一般形式”话题很是火热,小编也是针对面板模型的一般形式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
步骤一:分析数据的平稳性(单位根检验)。
按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
步骤二:协整检验或模型修正。
情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。
所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我们称这些变量序列间有协整关系存在。因此协整的要求或前提是同阶单整。
步骤三:面板模型的选择与回归。
面板数据模型的选择通常有三种形式:
一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。
一种是固定效应模型(Fixed Effects Regression Model)。如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。
一种是随机效应模型。
扩展资料:
面板数据模型可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。
其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量。
ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程。
lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程, Hadri Z统计量的检验原假设为不存在普通的单位根过程。
关于“面板模型的一般形式”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[访阳]投稿,不代表欧娜号立场,如若转载,请注明出处:https://ovna.cn/xwzx/202501-47510.html
评论列表(4条)
我是欧娜号的签约作者“访阳”!
希望本篇文章《面板模型的一般形式》能对你有所帮助!
本站[欧娜号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上有关“面板模型的一般形式”话题很是火热,小编也是针对面板模型的一般形式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。步骤一:分析数...